Detection and recognition of the level of congestion at an intersection is a very important problem and a valuable source of information in traffic management. Although it is just one of all the aspects that make up a traffic management system, it seems to be a crucial point for gathering information. In this paper, we present a technique based on a k-means clustering algorithm for classification, which has been already successfully used in a number of pattern recognition problems, namely: as an algorithm for face recognition problems and in a number of medical diagnosis problems and it compares very well with the state of the art techniques.

An algorithm for the recognition of levels of congestion in road traffic problems

NIEDDU L
2009-01-01

Abstract

Detection and recognition of the level of congestion at an intersection is a very important problem and a valuable source of information in traffic management. Although it is just one of all the aspects that make up a traffic management system, it seems to be a crucial point for gathering information. In this paper, we present a technique based on a k-means clustering algorithm for classification, which has been already successfully used in a number of pattern recognition problems, namely: as an algorithm for face recognition problems and in a number of medical diagnosis problems and it compares very well with the state of the art techniques.
2009
Vehicle detection
Image recognition
Traffic information
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/1000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact