Detection and recognition of the level of congestion at an intersection is a very important problem and a valuable source of information in traffic management. Although it is just one of all the aspects that make up a traffic management system, it seems to be a crucial point for gathering information. In this paper, we present a technique based on a k-means clustering algorithm for classification, which has been already successfully used in a number of pattern recognition problems, namely: as an algorithm for face recognition problems and in a number of medical diagnosis problems and it compares very well with the state of the art techniques.
An algorithm for the recognition of levels of congestion in road traffic problems
NIEDDU L
2009-01-01
Abstract
Detection and recognition of the level of congestion at an intersection is a very important problem and a valuable source of information in traffic management. Although it is just one of all the aspects that make up a traffic management system, it seems to be a crucial point for gathering information. In this paper, we present a technique based on a k-means clustering algorithm for classification, which has been already successfully used in a number of pattern recognition problems, namely: as an algorithm for face recognition problems and in a number of medical diagnosis problems and it compares very well with the state of the art techniques.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.