Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a "discretization" of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.

Background modeling in the maritime domain

Domenico Daniele Bloisi;
2014-01-01

Abstract

Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a "discretization" of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.
2014
background subtraction
computer vision
dynamic background
maritime surveillance
maritime dataset
image segmentation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/6280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact