Camera calibration is a necessary step in order to develop applications that need to establish a relationship between image pixels and real world points. The goal of camera calibration is to estimate the extrinsic and intrinsic camera parameters. Usually, for non-zooming cameras, the calibration is carried out by using a grid pattern of known dimensions (e.g., a chessboard). However, for cameras with zoom functions, the use of a grid pattern only is not sufficient, because the calibration has to be effective at multiple zoom levels and some features (e.g., corners) could not be detectable. In this paper, a calibration method based on two novel calibration patterns, specifically designed for zooming cameras, is presented. The first pattern, called in-lab pattern, is designed for intrinsic parameter recovery, while the second one, called on-field pattern, is conceived for extrinsic parameter estimation. As an application example, on-line virtual advertising in sport events, where the objective is to insert virtual advertising images into live or pre-recorded television shows, is considered. A quantitative experimental evaluation shows an increase of performance with respect to the use of standard calibration routines considering both re-projection accuracy and calibration time.

Novel patterns and methods for zooming camera calibration

Domenico Daniele Bloisi;
2013-01-01

Abstract

Camera calibration is a necessary step in order to develop applications that need to establish a relationship between image pixels and real world points. The goal of camera calibration is to estimate the extrinsic and intrinsic camera parameters. Usually, for non-zooming cameras, the calibration is carried out by using a grid pattern of known dimensions (e.g., a chessboard). However, for cameras with zoom functions, the use of a grid pattern only is not sufficient, because the calibration has to be effective at multiple zoom levels and some features (e.g., corners) could not be detectable. In this paper, a calibration method based on two novel calibration patterns, specifically designed for zooming cameras, is presented. The first pattern, called in-lab pattern, is designed for intrinsic parameter recovery, while the second one, called on-field pattern, is conceived for extrinsic parameter estimation. As an application example, on-line virtual advertising in sport events, where the objective is to insert virtual advertising images into live or pre-recorded television shows, is considered. A quantitative experimental evaluation shows an increase of performance with respect to the use of standard calibration routines considering both re-projection accuracy and calibration time.
2013
augmented reality
virtual advertisement
zooming camera calibration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/6281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact