: Autoencoders are dimension reduction models in the field of machine learning which can be thought of as a neural network counterpart of principal components analysis (PCA). Due to their flexibility and good performance, autoencoders have been recently used for estimating nonlinear factor models in finance. The main weakness of autoencoders is that the results are less explainable than those obtained with the PCA. In this paper, we propose the adoption of the Shapley value to improve the explainability of autoencoders in the context of nonlinear factor models. In particular, we measure the relevance of nonlinear latent factors using a forecast-based Shapley value approach that measures each latent factor's contributions in determining the out-of-sample accuracy in factor-augmented models. Considering the interesting empirical instance of the commodity market, we identify the most relevant latent factors for each commodity based on their out-of-sample forecasting ability.

Improving the explainability of autoencoder factors for commodities through forecast-based Shapley values

Iovanella, Antonio;Storani, Saverio
2024-01-01

Abstract

: Autoencoders are dimension reduction models in the field of machine learning which can be thought of as a neural network counterpart of principal components analysis (PCA). Due to their flexibility and good performance, autoencoders have been recently used for estimating nonlinear factor models in finance. The main weakness of autoencoders is that the results are less explainable than those obtained with the PCA. In this paper, we propose the adoption of the Shapley value to improve the explainability of autoencoders in the context of nonlinear factor models. In particular, we measure the relevance of nonlinear latent factors using a forecast-based Shapley value approach that measures each latent factor's contributions in determining the out-of-sample accuracy in factor-augmented models. Considering the interesting empirical instance of the commodity market, we identify the most relevant latent factors for each commodity based on their out-of-sample forecasting ability.
2024
Commodities
Explainability
Neural networks
Nonlinear factor models
Shapley value
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/9241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact