To enhance the autonomy and flexibility of robotic systems, a crucial role is played by the capacity to perceive and grasp objects. More in detail, robot manipulators must detect the presence of the objects within their workspace, identify the grasping point, and compute a trajectory for approaching the objects with a pose of the end-effector suitable for performing the task. These can be challenging tasks in the presence of complex geometries, where multiple grasping-point candidates can be detected. In this paper, we present a novel approach for dealing with complex-shaped automotive parts consisting of a deep-learning-based method for topological skeleton extraction and an active grasping pose selection mechanism. In particular, we use a modified version of the well-known Lightweight OpenPose algorithm to estimate the topological skeleton of real-world automotive parts. The estimated skeleton is used to select the best grasping pose for the object at hand. Our approach is designed to be more computationally efficient with respect to other existing grasping pose detection methods. Quantitative experiments conducted with a 7 DoF manipulator on different real-world automotive components demonstrate the effectiveness of the proposed approach with a success rate of 87.04% .

Selective Grasping for Complex-Shaped Parts Using Topological Skeleton Extraction

Bloisi, Domenico Daniele;
2024-01-01

Abstract

To enhance the autonomy and flexibility of robotic systems, a crucial role is played by the capacity to perceive and grasp objects. More in detail, robot manipulators must detect the presence of the objects within their workspace, identify the grasping point, and compute a trajectory for approaching the objects with a pose of the end-effector suitable for performing the task. These can be challenging tasks in the presence of complex geometries, where multiple grasping-point candidates can be detected. In this paper, we present a novel approach for dealing with complex-shaped automotive parts consisting of a deep-learning-based method for topological skeleton extraction and an active grasping pose selection mechanism. In particular, we use a modified version of the well-known Lightweight OpenPose algorithm to estimate the topological skeleton of real-world automotive parts. The estimated skeleton is used to select the best grasping pose for the object at hand. Our approach is designed to be more computationally efficient with respect to other existing grasping pose detection methods. Quantitative experiments conducted with a 7 DoF manipulator on different real-world automotive components demonstrate the effectiveness of the proposed approach with a success rate of 87.04% .
2024
computer vision for manufacturing; deep learning in grasping and manipulation; visual learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/9663
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact