In this paper, we propose a finite mixture of inhomogeneous Markov random fields for image segmentation. Prior probabilities of pixel class memberships are condi- tionally specified through a Gibbs distribution, where the association between pixel labels is modeled by a class-specific term. We show how model parameters can be estimated in a pseudo maximum likelihood framework.

Finite mixture models for image segmentation

Nieddu L;
2005-01-01

Abstract

In this paper, we propose a finite mixture of inhomogeneous Markov random fields for image segmentation. Prior probabilities of pixel class memberships are condi- tionally specified through a Gibbs distribution, where the association between pixel labels is modeled by a class-specific term. We show how model parameters can be estimated in a pseudo maximum likelihood framework.
2005
887847066X
Image Segmentation
Finite Mixtures
Gibbs Distribution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/1012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact