Autism is a complex neurodevelopmental disorder, likely encompassing multiple pathogenetic components. The aim of this study is to begin identifying at least some of these components and to assess their association with biological endophenotypes. To address this issue, we recruited 245 Italian patients with idiopathic autism spectrum disorders and their first-degree relatives. Using a stepwise approach, patient and family history variables were analyzed using principal component analysis ("exploratory phase"), followed by intra- and inter-component cross-correlation analyses ("follow-up phase"), and by testing for association between each component and biological endophenotypes, namely head circumference, serotonin blood levels, and global urinary peptide excretion rates ("biological correlation phase"). Four independent components were identified, namely "circadian & sensory dysfunction," "immune dysfunction," "neurodevelopmental delay," and "stereotypic behavior," together representing 74.5% of phenotypic variance in our sample. Marker variables in the latter three components are positively associated with macrocephaly, global peptiduria, and serotonin blood levels, respectively. These four components point toward at least four processes associated with autism, namely (I) a disruption of the circadian cycle associated with behavioral and sensory abnormalities, (II) dysreactive immune processes, surprisingly linked both to prenatal obstetric complications and to excessive postnatal body growth rates, (III) a generalized developmental delay, and (IV) an abnormal neural circuitry underlying stereotypies and early social behaviors.

Principal Pathogenetic Components and Biological Endophenotypes in Autism Spectrum Disorders

Frolli A;
2010-01-01

Abstract

Autism is a complex neurodevelopmental disorder, likely encompassing multiple pathogenetic components. The aim of this study is to begin identifying at least some of these components and to assess their association with biological endophenotypes. To address this issue, we recruited 245 Italian patients with idiopathic autism spectrum disorders and their first-degree relatives. Using a stepwise approach, patient and family history variables were analyzed using principal component analysis ("exploratory phase"), followed by intra- and inter-component cross-correlation analyses ("follow-up phase"), and by testing for association between each component and biological endophenotypes, namely head circumference, serotonin blood levels, and global urinary peptide excretion rates ("biological correlation phase"). Four independent components were identified, namely "circadian & sensory dysfunction," "immune dysfunction," "neurodevelopmental delay," and "stereotypic behavior," together representing 74.5% of phenotypic variance in our sample. Marker variables in the latter three components are positively associated with macrocephaly, global peptiduria, and serotonin blood levels, respectively. These four components point toward at least four processes associated with autism, namely (I) a disruption of the circadian cycle associated with behavioral and sensory abnormalities, (II) dysreactive immune processes, surprisingly linked both to prenatal obstetric complications and to excessive postnatal body growth rates, (III) a generalized developmental delay, and (IV) an abnormal neural circuitry underlying stereotypies and early social behaviors.
2010
Autistic disorder
macrocephaly
neurodevelopment
pervasive developmental disorders
principal component analysis, serotonin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/5705
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact