The detection of malignant lesions in dermoscopicimages by using automatic diagnostic tools can help in reducingmortality from melanoma. In this paper, we describea fully-automatic algorithm for skin lesion segmentation indermoscopic images. The proposed approach is highly accuratewhen dealing with benign lesions, while the detection accuracysignificantly decreases when melanoma images are segmented.This particular behavior lead us to consider geometrical andcolor features extracted from the output of our algorithm forclassifying melanoma images, achieving promising results.

Melanoma detection using delaunay triangulation

BLOISI, Domenico Daniele;
2016-01-01

Abstract

The detection of malignant lesions in dermoscopicimages by using automatic diagnostic tools can help in reducingmortality from melanoma. In this paper, we describea fully-automatic algorithm for skin lesion segmentation indermoscopic images. The proposed approach is highly accuratewhen dealing with benign lesions, while the detection accuracysignificantly decreases when melanoma images are segmented.This particular behavior lead us to consider geometrical andcolor features extracted from the output of our algorithm forclassifying melanoma images, achieving promising results.
2016
9781509001637
Automatic segmentation
Border detection
Dermoscopy images
Melanoma detection
Software
Artificial Intelligence
Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14090/6252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact