RoboCup represents an International testbed for advancing research in AI and robotics, focusing on a definite goal: developing a robot team that can win against the human world soccer champion team by the year 2050. To achieve this goal, autonomous humanoid robots' coordination is crucial. This paper explores novel solutions within the RoboCup Standard Platform League (SPL), where a reduction in WiFi communication is imperative, leading to the development of new coordination paradigms. The SPL has experienced a substantial decrease in network packet rate, compelling the need for advanced coordination architectures to maintain optimal team functionality in dynamic environments. Inspired by market-based task assignment, we introduce a novel distributed coordination system to orchestrate autonomous robots' actions efficiently in low communication scenarios. This approach has been tested with NAO robots during official RoboCup competitions and in the SimRobot simulator, demonstrating a notable reduction in task overlaps in limited communication settings. © 2024 Copyright for this paper by its authors.
Multi-Agent Coordination for a Partially Observable and Dynamic Robot Soccer Environment with Limited Communication
Domenico D. Bloisi
2024-01-01
Abstract
RoboCup represents an International testbed for advancing research in AI and robotics, focusing on a definite goal: developing a robot team that can win against the human world soccer champion team by the year 2050. To achieve this goal, autonomous humanoid robots' coordination is crucial. This paper explores novel solutions within the RoboCup Standard Platform League (SPL), where a reduction in WiFi communication is imperative, leading to the development of new coordination paradigms. The SPL has experienced a substantial decrease in network packet rate, compelling the need for advanced coordination architectures to maintain optimal team functionality in dynamic environments. Inspired by market-based task assignment, we introduce a novel distributed coordination system to orchestrate autonomous robots' actions efficiently in low communication scenarios. This approach has been tested with NAO robots during official RoboCup competitions and in the SimRobot simulator, demonstrating a notable reduction in task overlaps in limited communication settings. © 2024 Copyright for this paper by its authors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.